A Modular Neural Network Approach to Chemical Content Analysis of Vegetation

نویسندگان

  • N. Kussul
  • V. Yatsenko
  • A. Sachenko
  • G. Markowsky
  • A. Sydorenko
  • S. Skakun
  • S. Ganzha
چکیده

The state of a plant affects its chlorophyll content, which in turn, affects the way the plant reflects light. Consequently, the characteristics of the reflected light can be used to determine the health of a plant. This raises the possibility of monitoring large areas of vegetation by analyzing the reflectance of the plants in the area. This paper discusses the use of neural networks for analyzing the reflectance of plants. We discuss two approaches: the classical approach and a modular approach and demonstrate that the modular approach has certain advantages for analyzing the reflectance of plants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach

Risks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach   Nowadays, environmental risk assessment has been defined as one of the effective in environmental planning and policy making. Considering the position and structure of vegetation on the forest floor, the main role of forest under ca...

متن کامل

Inverse modeling of gravity field data due to finite vertical cylinder using modular neural network and least-squares standard deviation method

In this paper, modular neural network (MNN) inversion has been applied for the parameters approximation of the gravity anomaly causative target. The trained neural network is used for estimating the amplitude coefficient and depths to the top and bottom of a finite vertical cylinder source. The results of the applied neural network method are compared with the results of the least-squares stand...

متن کامل

Neural Network Meta-Modeling of Steam Assisted Gravity Drainage Oil Recovery Processes

Production of highly viscous tar sand bitumen using Steam Assisted Gravity Drainage (SAGD) with a pair of horizontal wells has advantages over conventional steam flooding. This paper explores the use of Artificial Neural Networks (ANNs) as an alternative to the traditional SAGD simulation approach. Feed forward, multi-layered neural network meta-models are trained through the Back-...

متن کامل

A Comparison of Regression and Neural Network Based for Multiple Response Optimization in a Real Case Study of Gasoline Production Process

Most of existing researches for multi response optimization are based on regression analysis. However, the artificial neural network can be applied for the problem. In this paper, two approaches are proposed by consideration of both methods. In the first approach, regression model of the controllable factors and S/N ratio of each response has been achieved, then a fuzzy programming has been app...

متن کامل

The efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator

1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas.  Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004